SYNTHESIS AND REACTIONS OF SOME DIPHENYL SULFIDES

Shaban M. Radwan
Chemistry Department, Faculty of Science, Assiut University, Assiul, Egypt

In view of the wide spectrum of activity associated with many pyrazoline derivatives ${ }^{1-3}$, substituted thiazoles ${ }^{4}$, oxazoles ${ }^{5}$ and diaryl sulfides ${ }^{6,7}$, we synthesized some new diaryl sulfides carrying the above heterocyclic systems.

EXPERIMENTAL

Melting points are uncorrected. Elemental analyses were performed on Perkin-Elmer 240 elemental analyzer. IR spectra were recorded in KBr pellets. ${ }^{1}$ II NMR spectra were recorded on Varian EM- 390 spectrometer in suitable deuterated using TMS as an internal standard.

4'-Methyl-2-nitro-4-acetyldiphenyl Sulfide (I)

A solution of $8.16 \mathrm{~g}(0.03 \mathrm{~mol})$ of $3-\mathrm{mitro}-4-$ chloroacetophenone in 40 mil of hot cthanol was added to a mixture of 3.72 g (0.03 mol) of p-lhiocresol, 3.9 g sodium carbonate and $12 \mathrm{ml} \mathrm{II}_{2} \mathrm{O}$ and the resulting mixture was heated on a water bath for 4 h . The precipitated solid was filered off, washed with water and recrystallized from ethanol, yicld 71%, m.p. $110-112{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}(287.4)$ calculated: $62.67 \% \mathrm{C}$, $4.57 \% \mathrm{H}, 4.87 \% \mathrm{~N}, 11.16 \% \mathrm{~S}$; found: $62.43 \% \mathrm{C}, 4.23 \%$ II, $4.63 \% \mathrm{~N}, 11.23 \% \mathrm{~S}$. IR spectrum: 1680 $(\mathrm{C}=\mathrm{O}) ; 1325\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}_{\left(\mathrm{CDCl}_{3}\right)}$: $2.5 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{Cl}_{3}\right) ; 2.6 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{COCl}_{3}\right) ; 6.8-8.0 \mathrm{~m}, 7 \mathrm{H}(\mathrm{Ar}-\mathrm{H})$.

3-Nitro-4-(p-tolyl) thioacetophenone Phenylhydrazone (II)
A mixture of $0.86 \mathrm{~g}(0.003 \mathrm{~mol}) 4^{\prime}$-methyl-2-nitro-4-acetyldiphenyl sulfide (I), (0.003 mol) phenylhydrazine and a drop of acetic in ethanol (20 ml) was heated under reflux for 30 min . On cooling, the solid product obtained was filtered off and recrystallized from benzene. Yield 81%, m.p. $173-175{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}(377.5)$ calculated: $66.83 \% \mathrm{C}, 5.08 \% \mathrm{H}, 11.14 \% \mathrm{~N}, 8.50 \% \mathrm{~S}$; found: $66.73 \% \mathrm{C}, 4.90 \% \mathrm{H}$, $11.02 \% \mathrm{~N}, 9.32 \% \mathrm{~S}$. IR spectrum $3330(\mathrm{NH}) ; 1330\left(\mathrm{NO}_{2}\right)$.

4'-Methyl-2-nitro-4-(1"-phenyl-5"-formylpyrazole-3"-yl)diphenyl Sulfide (III)

To the Vilsmeier reagent prepared from DMF (10 ml) and $\mathrm{POCl}_{3}(1.1 \mathrm{ml}, 0.012 \mathrm{~mol}), 1.50 \mathrm{~g}(0.004 \mathrm{~mol})$ of hydrazone $/ I$ was added and the reaction mixture stirred al $60-65^{\circ} \mathrm{C}$ for 2 h , then poured into ice-cold water. The product which separated on neutralization with NallCO_{3} was obtained in 76% yield and recrystallized from ethanol-benzene as a bright yellow solid, m.p. $182-184^{\circ} \mathrm{C}$. For $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}(416.5)$ calculated: $66.30 \% \mathrm{C}, 4.36 \% \mathrm{H}, 10.09 \% \mathrm{~N}, 7.70 \% \mathrm{~S}$; found: $66.13 \% \mathrm{C}, 4.11 \% \mathrm{H}, 10.23 \% \mathrm{~N}, 7.35 \% \mathrm{~S}$. IR spectrum: $1685(\mathrm{ClO}) ; 1355\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{II} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.4 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 6.8-8.75 \mathrm{~m}, 13 \mathrm{H}(\mathrm{Ar}-\mathrm{H}$ and CH pyrazole ring); $9.9 \mathrm{~s}, 1 \mathrm{H}$ (CHO).

4^{\prime}-Methyl-2-nitro-4-(indol-3"-yl)diphenyl Sulfide (IV)
A mixture of $0.69(0.0013 \mathrm{~mol})$ of hydrazone $/ I$ and polyphosphoric acid (3 ml) was heated on a water bath for 15 min . On cooling and dilution with water, the precipitate formed was filtered off and recrystallized from benzene as brownish crystals in 54% yicld, m.p. $243-245^{\circ} \mathrm{C}$. For $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ (360.4) calculated: $69.95 \% \mathrm{C}, 4.48 \% \mathrm{H}, 7.77 \% \mathrm{~N}, 8.89 \% \mathrm{~S}$; found: $69.83 \% \mathrm{C}, 4.53 \% \mathrm{H}, 7.53 \% \mathrm{~N}, 8.80 \% \mathrm{~S}$. IR spectrum: 3380 (NH indole ring); $1340\left(\mathrm{NO}_{2}\right)$.

4'-Methyl-2-nitro-4-cinnamoyldipheny! Sulfide Derivatives (VIa - VIc)

To a mixture of $I(0.003 \mathrm{~mol})$ and the aromatic aldehyde (0.004 mol) in ellanol (20 ml) was added with stirring $10 \% \mathrm{NaOH}(1 \mathrm{ml})$. The mixture was further stirred for 3 h at room temperature. The solid product obtained was filtered off, washed with ethanol and recrystallized from the proper solvent. Physical and spectral data are summarized in Table I.

4'-Methyl-2-nitro-4-(1"-phenyl-5"-arylpyrazoline-3"-yl)diphenyl Sulfide Derivatives (VIIa - V/Ic)
A mixture of VIa - VIc (0.003 mol), phenylhydrazine (0.004 mol) in absolute ethanol (20 ml) and a few drops of piperidine were heated under reflux for 4 h . The products separated on cooling were filtered off and recrystallized from the suitable solvent. Details are summarized in Table I.

4'-Methyl-2-nitro-4-bromoacetyldiphenyl Sulfide (IX)

To a solution of $I(0.025 \mathrm{~mol})$ in glacial acetic acid (50 ml) was added dropwise with stirring at room temperature $1.25 \mathrm{ml}(0.025 \mathrm{~mol})$ of bromine in glacial acetic acid (10 ml) during 2 h . The precipitate formed was filtered off, washed with water and recrystallized from ethanol in 76% yield, m.p. $84-86{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrNO}_{3} \mathrm{~S}$ (366.5) calculated: $49.15 \% \mathrm{C}, 3.30 \% \mathrm{H}, 21.84 \% \mathrm{Br}, 3.82 \% \mathrm{~N}, 8.75 \% \mathrm{~S}$; found: $49.03 \% \mathrm{C}, 3.03 \% \mathrm{H}, 21.76 \% \mathrm{Br}, 3.77 \% \mathrm{~N}, 8.53 \% \mathrm{~S}$. IR spectrum: $1685(\mathrm{C}=0) ; 1340\left(\mathrm{NO}_{2}\right)$.

4'-Methyl-2-nitro-4-(2"-substituted thiazol-4"-yl)diphenyl Sulfide Derivatives ($X a-X c$)
A mixture of $I X(0.003 \mathrm{~mol})$, thioureas or thioacetamide (0.003 mol) in ethanol (20 ml) was heated under reflux for 7 h . The products obtained on cooling were filtered off, washed with sodium bicarbonate and recrystallized from the proper solvent. Physical and speetral data listed in Table I.

Reaction of $I X$ with Hexamethylenetetramine
A mixture of $I X(0.003 \mathrm{~mol})$ in chlorobenzene (15 ml) and hexamethylenetetramine (0.003 mol) was stirred at room temperature for 12 h , the product XIII was filtered off and recrystallized from chlorobenzene in 83% yield, m.p. $212{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrN}_{5} \mathrm{O}_{3} \mathrm{~S}(506.4$) calculated: $49.74 \% \mathrm{C}, 4.78 \%$ II. $15.79 \% \mathrm{Br}, 13.82 \% \mathrm{~N}$, 6.32% S; found: $49.56 \% \mathrm{C}, 4.53 \% \mathrm{H}, 15.84 \% \mathrm{Br}, 13.63 \% \mathrm{~N}, 6.11 \% \mathrm{~S}$. IR spectrum: 1675 (C=O); $1330\left(\mathrm{NO}_{2}\right)$.

Hydrolysis of Compound XIII

Compound XIII (2g) in a mixlure of hydrochloric acid-ethanol ($3: 15 \mathrm{ml}$) was stirred at room temperature for 14 h . The product formed was filtered off and recrystallized from water 10 give $X I V$ as pale yellow crystals in 35% yield, m.p. $240{ }^{\circ} \mathrm{C}$ (decomposed). For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ (338.8) calculated: $53.14 \% \mathrm{C}$, $4.47 \% \mathrm{H}, 10.48 \% \mathrm{Cl}, 8.27 \% \mathrm{~N}, 9.46 \% \mathrm{~S}$; found: $52.97 \% \mathrm{C}, 4.31 \% \mathrm{H}, 10.68 \% \mathrm{Cl}, 8.12 \% \mathrm{~N}, 9.13 \% \mathrm{~S}$. IR spectrum: $3200-3300\left(\mathrm{NH}_{2}\right) ; 1685(\mathrm{C}=\mathrm{O}) ; 1330\left(\mathrm{NO}_{2}\right)$.
Table I
Physical and spectral data of sulfides VIa - VIc, VIIa - VIIc and Xa -Xc

Compound	M. p., ${ }^{\circ} \mathrm{C}$ Yield, \%	Formula(M. w.)	Calculated/Found				Spectral data
			\% C	\% H	\% N	\% S	
VIa	193-195 ${ }^{\text {a,b }}$	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$	70.35	4.57	3.73	8.54	IR: $1660(\mathrm{C}=0) ; 1340\left(\mathrm{NO}_{2}\right)$
	60	(375.4)	69.99	4.43	3.69	8.48	
V / b	$\begin{gathered} 183-185^{a, b} \\ 62 \end{gathered}$	$\underset{(405.8)}{\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}}$	68.10	4.73	3.45	7.91	IR: $1655(\mathrm{C}=0)$; $1340\left(\mathrm{NO}_{2}\right)$
			68.30	4.68	3.39	7.83	${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $2.45 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$;
							$3.8 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ;$ $6.85-8.70 \mathrm{~m}, 13 \mathrm{H}(\mathrm{Ar}-\mathrm{H}$ and $\stackrel{\text { M }}{\mathrm{C}}-\mathrm{CH}-\mathrm{CH})$
VIc	$212-214^{a, b}$	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} \\ (421.3) \end{gathered}$	62.69	3.83	6.65	7.61	IR: $1665(\mathrm{C}=\mathrm{O}) ; 1340\left(\mathrm{NO}_{2}\right)$
	68		62.53	3.78	6.61	7.58	
VIIa	160-162 ${ }^{\text {b }}$	$\underset{(465.3)}{\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}}$	72.21	4.99	9.03	6.88	IR: $1600(\mathrm{C}=\mathrm{N}) ; 1340\left(\mathrm{NO}_{2}\right)$
	70		72.43	4.87	9.21	6.77	
VIlb	110-112 ${ }^{\text {a }}$	$\begin{gathered} \mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \\ (495.3) \end{gathered}$	70.26	5.09	8.18	6.39	IR: $1610(\mathrm{C}=\mathrm{N}) ; 1340\left(\mathrm{NO}_{2}\right)$
	69		70.41	5.21	8.43	6.43	
VIIc	136-138 ${ }^{\text {a }}$	$\underset{(510.3)}{\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}}$	68.84	4.35	10.97	6.28	IR: $1615(\mathrm{C}=\mathrm{N}): 1340\left(\mathrm{NO}_{2}\right)$
	72		68.73	4.21	10.88	6.21	
$X a$	$166-169^{a, b}$	$\begin{gathered} \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} \\ (355.3) \end{gathered}$	57.42	3.69	11.82	18.04	IR: $3340\left(\mathrm{NHCH}_{3}\right)$: $1615(\mathrm{C}-\mathrm{N})$
	67		57.54	3.57	11.67	18.21	${ }^{1} \mathrm{II} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.4 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$;
							$2.7 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$ thiazole ring); $6.8-8.7 \mathrm{~m}$, $8 \mathrm{H}(\mathrm{Ar}-\mathrm{H}$ and Cl thiazole ring)
$X b$	208-210 ${ }^{\text {b }}$	$\begin{gathered} \mathrm{C}_{22} \mathrm{H}_{1} 7 \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} \\ (419.3) \end{gathered}$	62.29	4.09	10.02	15.29	IR: 3350 (NHPh): 1630 (Cm) ;
	63		62.43	4.21	10.23	15.31	$1320\left(\mathrm{NO}_{2}\right)$
$X c$	248-250 ${ }^{\text {c }}$	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2} \\ (393.3) \end{gathered}$	55.93	3.82	12.24	18.67	IR: 3 350, $3110\left(\mathrm{NH}_{2}\right) ; 1630(\mathrm{C}=\mathrm{N})$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CF}_{3} \mathrm{COOH}\right): 2.45 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$; $6.9-8.7 \mathrm{~m}, 8 \mathrm{H}$ (Ar-H and CH thiazole ring)
	69		55.87	3.71	12.43	18.83	

[^0]Table II

Compound	$\begin{aligned} & \text { M. p. }{ }^{\circ} \mathrm{C} \\ & \text { Yicld. } \% \end{aligned}$	Formula(M. w.)	Calculated/Found				Spectral data
			\% C	\% H	\% N	\% S	
V^{\prime}	$260-262^{a}$	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	64.30	4.11	7.17	8.17	IR: 3385 (NH indole ring); 1320 ,
	36	(392.2)	63.98	4.22	7.21	8.24	$1150\left(\mathrm{SO}_{2}\right) ; 1330\left(\mathrm{NO}_{2}\right)$
VIIIa	213-215 ${ }^{\text {b }}$	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$	64.83	4.21	3.43	7.87	IR: $1660(\mathrm{C}-\mathrm{O}): 1330,1140\left(\mathrm{SO}_{2}\right)$
	50	(407.2)	64.77	4.33	3.39	7.81	${ }^{1} \mathrm{H}$ NMR ((CD) $\left.)_{2} \mathrm{SO}\right): 2.4 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$;
							$7.3-8.7 \mathrm{~m}, 14 \mathrm{H}(\mathrm{Ar}-\mathrm{H}$ and $\mathrm{CH}=\mathrm{CH})$
VIIIb	$210-212^{c}$	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$	58.38	3.57	6.19	7.08	IR: $1665(\mathrm{C}=0) ; 1340,1345\left(\mathrm{SO}_{2}\right)$
	52	(452.2)	58.21	3.48	6.21	7.21	
$X I$	$180-182^{d}$	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	59.94	4.41	8.19	9.33	IR: 3345 (NHCH_{3}): 1620 ($\left.\mathrm{C}=\mathrm{N}\right): 1360$,
	56	$(4+3.3)$	59.88	4.33	8.23	9.11	$1155\left(\mathrm{SO}_{2}\right)$
							${ }^{1} \mathrm{H} \mathrm{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): 2.4 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$;
							$2.6 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$ thiazole ring):
							$7.4-8.6 \mathrm{~m}, 8 \mathrm{H}$ ($\mathrm{Ar}-\mathrm{H}$ and thiazole ring)
XII	160-162 ${ }^{\text {d }}$	$\mathrm{C}_{15} \mathrm{H}_{1} \mathrm{SBrO}_{5} \mathrm{~S}$	41.84	2.81	3.25	7.45	IR: $1690(\mathrm{C}-0)$; $1355,1360\left(\mathrm{SO}_{2}\right)$
	62	(430.2)	41.73	2.80	3.19	7.39	${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.4 \mathrm{s} .3 \mathrm{H}\left(\mathrm{CH}_{3}\right): 4.3 \mathrm{~s}$, $2 \mathrm{H}\left(\mathrm{COCH}_{2} \mathrm{Br}\right) ; 7.3-8.4 \mathrm{~m}, 7 \mathrm{H}(\mathrm{Ar}-\mathrm{H})$

[^1]Reaction of Derivative XIV with Benzoyl Chloride
A mixture of 1.01 g (0.003 mol) of phenacylammonium chloride X / V and 0.003 mol of benzoyl chloride in pyridine (10 ml) was heated on a water bath for 1 h . The mixture was poured in water, the product formed was filtered off, washed with water and reerystallized from ethanol to give XV in 38% yield m.p. 182 $184{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (406.5) calculated: $64.98 \% \mathrm{C}, 4.47 \% \mathrm{H}, 6.89 \% \mathrm{~N}, 7.89 \% \mathrm{~S}$; found: $64.73 \% \mathrm{C}$, $4.18 \% \mathrm{H}, 6.75 \% \mathrm{~N}, 7.98 \%$ S. IR spectrum $3290(\mathrm{NH}) ; 1690-1630(2 \mathrm{C}=0) ; 1335\left(\mathrm{NO}_{2}\right)$.
4^{\prime}-Methyl-2-nitro-4-(2"-phenyloxazol-5"-yl)diphenyl Sulfide (XVI)
Compound $X V(1.21 \mathrm{~g}, 0.003 \mathrm{~mol})$ in 10 ml of POCl_{3} was heated under reflux for 10 h . The mixture after cooling was poured in cold water, the product formed was filtered off, washed with water and recrystallized from benzene to give 4^{\prime}-methyl-2-nitro-4-($2^{\prime \prime}$-phenyloxazol-5"-yl)diphenyl sullide XVI in 43% yield, m.p. $204{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(388.4)$ calculated: $68.00 \% \mathrm{C}, 4.16 \% \mathrm{H} .7 .21 \% \mathrm{~N}, 8.25 \%$ S; found: $68.21 \% \mathrm{C}, 4.23 \% \mathrm{H}, 7.40 \% \mathrm{~N}, 8.50 \% \mathrm{~S}$. IR spectrum: $1620\left(\mathrm{C}=\mathrm{N}\right.$ oxazole ring): $1335\left(\mathrm{NO}_{2}\right)$.

Oxidation of Sulfides $I V, V I a, V B, I X$ and $X a$ to their Corresponding
Sulfones (V,VIIIa, VIIIb, XII and $X I$)
To the above sulfides (0.005) mol) in glacial acctic acid (20 ml) was added dropwise hydrogen peroxide ($30 \%, 10 \mathrm{ml}$). The reaction mixture was kept at room temperature for $7-10$ days. Crystalline products were recrystallized from the proper solvent. Results are summarized in Table II.

REFERENCES

1. Grosscurl A. C., Van Hes R., Wellinga K. J.: Agric. Food. Chem. 27, 406 (1979).
2. Nayak A., Das S., Mishra C. R., Milıra A. S. J.: Indian Chem. Soc. 5.f, 485 (1977).
3. Garg H. G. J.: J. Med. Chem. 15, 446 (1972).
4. Gewald K.: J. Prakt. Chem. 32, 26 (1966).
5. Ott D. G., Hayes F. N., Hansbury E., Ker V. N.: J. Am. Chem. Soc. 79, 5448 (1957).
6. Abbady M. S., Askaris S., Morgan M., Ternary A. L.: J. Heterocycl. Chem. 19. 1472 (1982).
7. Abbady M. A., El Maghraby M. A.: Indian J. Chem., B 1S, 413 (1979).

[^0]: Crystallized from: ${ }^{a}$ benzene; ${ }^{b}$ ethanol; ${ }^{c}$ dioxane.

[^1]: Crystallized from: ${ }^{a}$ ethyl acetate; ${ }^{b}$ acetic acid: ${ }^{c}$ dioxane: ${ }^{d}$ ethanol.

